Regulation of replication fork progression through histone supply and demand.
نویسندگان
چکیده
DNA replication in eukaryotes requires nucleosome disruption ahead of the replication fork and reassembly behind. An unresolved issue concerns how histone dynamics are coordinated with fork progression to maintain chromosomal stability. Here, we characterize a complex in which the human histone chaperone Asf1 and MCM2-7, the putative replicative helicase, are connected through a histone H3-H4 bridge. Depletion of Asf1 by RNA interference impedes DNA unwinding at replication sites, and similar defects arise from overproduction of new histone H3-H4 that compromises Asf1 function. These data link Asf1 chaperone function, histone supply, and replicative unwinding of DNA in chromatin. We propose that Asf1, as a histone acceptor and donor, handles parental and new histones at the replication fork via an Asf1-(H3-H4)-MCM2-7 intermediate and thus provides a means to fine-tune replication fork progression and histone supply and demand.
منابع مشابه
Regulation of Replication Fork Advance and Stability by Nucleosome Assembly
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications...
متن کاملNew histone supply regulates replication fork speed and PCNA unloading
Correct duplication of DNA sequence and its organization into chromatin is central to genome function and stability. However, it remains unclear how cells coordinate DNA synthesis with provision of new histones for chromatin assembly to ensure chromosomal stability. In this paper, we show that replication fork speed is dependent on new histone supply and efficient nucleosome assembly. Inhibitio...
متن کاملH2B Mono-ubiquitylation Facilitates Fork Stalling and Recovery during Replication Stress by Coordinating Rad53 Activation and Chromatin Assembly
The influence of mono-ubiquitylation of histone H2B (H2Bub) on transcription via nucleosome reassembly has been widely documented. Recently, it has also been shown that H2Bub promotes recovery from replication stress; however, the underling molecular mechanism remains unclear. Here, we show that H2B ubiquitylation coordinates activation of the intra-S replication checkpoint and chromatin re-ass...
متن کاملHistone H3.3 Is Required to Maintain Replication Fork Progression after UV Damage
Unlike histone H3, which is present only in S phase, the variant histone H3.3 is expressed throughout the cell cycle [1] and is incorporated into chromatin independent of replication [2]. Recently, H3.3 has been implicated in the cellular response to ultraviolet (UV) light [3]. Here, we show that chicken DT40 cells completely lacking H3.3 are hypersensitive to UV light, a defect that epistasis ...
متن کاملInhibition of Histone Deacetylase 3 Causes Replication Stress in Cutaneous T Cell Lymphoma
Given the fundamental roles of histone deacetylases (HDACs) in the regulation of DNA repair, replication, transcription and chromatin structure, it is fitting that therapies targeting HDAC activities are now being explored as anti-cancer agents. In fact, two histone deacetylase inhibitors (HDIs), SAHA and Depsipeptide, are FDA approved for single-agent treatment of refractory cutaneous T cell l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Science
دوره 318 5858 شماره
صفحات -
تاریخ انتشار 2007